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 Abstract 

Aim: Investigate the possible effect of H2S on skeletal muscle in cast immobilization model of 
hindlimbs in rats and the role of ATP sensitive K channels in the mechanism of action of H2S on 
skeletal muscle. Methodology: This study was conducted on 40 adult male rats weighing 180-
250 grams. Rats were divided into 4 groups: Group (I) (Immobilized group) (I group) Group (II) 
(Immobilized and H2S group) (IH group) Group (III) (Immobilized with combined H2S and ATP 
sensitive K channels blocker group) (IHG group). All the three groups were maintained with 
plaster cast for two weeks. A group of negative control rats that not immobilized, not receiving 
any drugs were used Group (IV) (negative control group) (C group). At the end of the 2 weeks, 
the rats were sacrificed. Then, casts in immobilized groups were removed to obtain tibialis 
anterior muscles from immobilized and contralateral limbs. Biochemical, histopathological, and 
immunohistopathological examination were studied. Results: The immobilized group showed 
significant deterioration in the contractile parameters and significant atrophic changes in tibialis 
anterior muscles. NAHS supplementation in (IH gp) can help in protection against myopathy as it 
showed significant alleviation of atrophic changes in tibialis anterior muscles. Addition of 
glibenclamide to NAHS treatment to immobilized rats (IHG gp) led to similar changes in tibialis 
anterior muscles as the immobilized group. Conclusion It is possible to conclude that H2S has a 
protective role in the cast immobilization rat model and it exerts its actions mainly through 
opening the ATP sensitive K+ channels  
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INTRODUCTION 

               It has been recently recognized that 

skeletal muscle is an endocrine organ that can 

express, synthesize and secrete a variety of 

bioactive molecules which exert significant 

regulatory effects (1). 

        Skeletal muscle is an essential regulator of 

energy homeostasis and a potent coordinator of 

exercise-induced adaptations in other organs 

including brain and liver (2). Recent observations 

in human and rodents have demonstrated the 

ability of contracting myofibers to release 

cytokines and other peptides (myokines) such as; 

myostatin, irisin, interleukin-6 (IL-6), brain-

derived neurotrophic factor (BDNF), interleukin-

15 (IL-15), myonectin (CTRP15), decorin, 

fibroblast growth factor (FGF) 21 and hydrogen 

sulfide (H2S) (3). 

    Endogenous H2S is mainly generated 

from L-cysteine by the catalysis of cystathionine 

β-synthase (CBS) and cystathionine γ-lyase (CSE) 

(4). H2S can be produced exogenously from a 

number of H2S-releasing compounds such as 

calcium sulfide, sodium hydrosulfide (NaHS) and 

sodium sulfide (Na2S) (5). 

             Skeletal muscle atrophy or wasting 

represents an important problem (6). Muscle 

atrophy results from disuse, metabolic disease, 

malnutrition and aging. It is associated with a 

variety of conditions such as bed rest, limb 

immobilization, myopathies and space flight (7). It 

is characterized by enhanced reactive oxygen 

species, increased mitochondrial apoptosis and 

reduced mitochondrial function (8). It is believed 

that the process of muscle atrophy is mediated via 

the activation of several proteolytic systems like 

muscle specific RING finger 1 (MuRF-1) and 

muscle atrophy F-box (MAFbx) mainly (9). 

      A number of studies have demonstrated that 

supplementation of various types of antioxidants is 

one of the effective countermeasures against 

disuse muscle atrophy (10). Recently, H2S is 

proved to be important in abroad range of 

physiological and pathophysiological functions 

(11). Being a gas, H2S travels freely across cell 

membranes activating various molecular targets 

such as activation of KATP channels which are  

directly sensitive to cell metabolism (12). They 

are called so, because they open when cellular 

ATP levels falls. The channels are widely 

distributed in a number of tissues (13). In the 

skeletal muscle sarcolemma, KATP channels are 

among the most abundantly expressed K+ 

channels. Their densities reaching of 10 

channels per mm2 of surface membrane (14). It 

accounts for different biological functions of 

H2S in the cardiovascular, respiratory, 

gastrointestinal, nervous and endocrine systems 

(15). The physiological role played by KATP 

channels in skeletal muscle is not clear (16). 

Thus, we aimed in this work to: investigate the 

possible effect of H2S on skeletal muscle in cast 

immobilization model of hindlimbs in rats. Also, 

to clarify the role of ATP sensitive K channels in 

the mechanism of action of H2S on skeletal 

muscle. 

 

Materials and Methods:  

         This study was conducted on 40 adult male 

albino rats aged 6-8 weeks, weighing 180-250 

grams. Animals were bred and housed in the 

animal house of Medical Experimental Research 

center (MERC), Mansoura University, at a 
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temperature of 20  , fed a standard laboratory 

chow and had free access to tap water. All 

experimental protocols were approved by our local 

ethics committee (approval no: MDP.18.04.4.R1). 

Chemicals: Sodium hydrosulfide (NAHS) is 

available in the form of flakes in glass bottle 10 

gm with molecular weight 56.06 (Acros organics 

© Beligum) and Glibenclamide (Daonil) (sensitive 

KATP channels blocker) is available in tablets 

contain 5mg. It is produced by SANOFI –

SYNTHELABO Pharmaceuticals. Both were 

dissolved in distilled water in a concentration 

(1mg/1ml). 

Experimental design:  Rats were divided 

randomly into 4 groups (10 rats each): Group (I) 

(Immobilized group) (I group): with their left 

hindlimbs were immobilized by plaster cast (17). 

Group (II) (Immobilized and H2S group) (IH 

group): in which they were injected 

intraperitoneally by sodium hydrosulfide (NAHS) 

at a dose of 2 mg/kg daily (18) combined with 

immobilization. Group (III) (Immobilized with 

combined H2S and ATP sensitive K channels 

blocker group) (IHG group): in which they 

received glibenclamide (sensitive KATP channels 

blocker) at a dose of 5 mg/kg daily by gastric 

gavage (19) combined with sodium hydrosulfide 

(NAHS) and immobilization.  

       All the three groups were maintained with 

plaster cast for two weeks. The contralateral loose 

limb were used as a control for each group and to 

ensure that the contralateral hindlimb were an 

adequate control reference, a group of negative 

control rats that not immobilized, not receiving 

any drugs were used Group (IV) (negative control 

group) (C group). 

At the end of the 2 weeks, the rats were 

anesthetized with thiopental (120mg/kg) injected 

intraperitoneally. Rats were sacrificed by cardiac 

puncture. Then, casts in immobilized groups were 

removed to obtain our preparation by isolation of 

tibialis anterior muscle in order to record the 

contractile parameters by computerized data 

acquisition system unit MP45(BIOPAC Student 

Lab 3.7.3.). Then, these tissue samples were used 

for biochemical and histopathological 

examination. 

Hind limb immobilization procedure: Rats were 

anesthetized intraperitoneally with 90 mg/kg 

ketamine and 10 mg/kg xylazine. Then, were 

subjected to cast immobilization by application of 

the cast from anterior superior iliac crest to the 

lower part of the foot (pelvipedal cast) with ankle 

joint in neutral position to avoid the lengthening of 

tibialis anterior. The rats were checked on daily 

basis for chewed plaster, venous occlusion, 

abrasions and fecal clearance (20). 

1.Calculation of  the relative weight of tibialis 

anterior 

At the end of study, the rats were weighed, then 

tibialis and contralateral tibialis were dissected out. 

The relative weight ratio of the muscle was 

calculated as the ratio of the wet weight of the 

muscle divided by the body weight at the end of 

the experiment (21). 

2.Recording of the contractile parameters by 

BIOPAC 

The preparation (tibialis anterior muscle) must be 

immersed in Krebs solution at 30° C. The Krebs 

solution had the following composition (mM): 120 

NaCl; 25 NaHCO3; 1.2 NaH2PO4; 1.2 MgSO4; 5.0 

KCI; 2.5 calcium gluconate; 11. 5 glucose. It was 

continuously bubbled with a mixture of 5 %C02; 
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95 % 02, and the pH maintained at 7.4. Before 

recording the contraction, Biopac apparatus must 

be adjusted by connecting BSLSTM stimulator to 

channel (1) and recording electrode (SS12LA) was 

connected to channel (2). Place the stimulating 

electrodes on the muscle for direct stimulation. Set 

up channels and adjust the baseline. At first, record 

maximal isometric twitch by applying single 

maximal stimulation (30 V) (22).  Then, record the 

tetanic contraction by applying continuous 

stimulation. The tetanic frequency in tibialis 

anterior was 80 HZ (23). 

 To test the fatigability, a low frequency muscle 

fatigue protocol (stimulation at 4HZ for 5 min) 

was applied. The decrease in the tension after 5 

min was expressed as a percentage of the initial 

tension, denoting the fatigue index (FI). An 

isometric single twitch was recorded 3 min after 

the completion of the fatigue protocol to estimate 

the recovery ability of the muscle. The tension 

recorded after the 3 min recovery period was 

expressed as a percentage of the initial tension, 

denoting the recovery index (RI). The force at 4HZ 

was considered the initial tension for both FI, RI 

(24). The contractile parameters: maximum 

isometric twitch force (Pt), maximum tetanic force 

(Po) , maximum specific isometric tetanic force 

(sPo), time to peak (TP), half relaxation time 

(1⁄2RT), fatigue index (FI) and recovery index (RI) 

were measured. The maximum specific force (sPo), 

equals maximum tetanic force per cross-sectional 

area (CSA) and CSA were measured by scaling 

histopathological specimens (25). 

3.Biochemical assessment: Determination of 

Total antioxidant capacity (TAC) was done by the 

method of (26).Determination of Malondialdehyde 

(MDA) was according to Urchiyama and Mihara 

method (27), utilizing kits purchased from 

Biodiagnostic, Egypt. 

4. Histopathological examination 

 After recording the contractile parameters, tibialis 

anterior muscles were fixed in 10% neutral 

buffered formalin processed by standard procedure 

for paraffin embedding and serial sections were cut 

(5 μ). The sections were stained with hematoxylin 

and eosin. 

5.Determination of MURF-1 by 

immunohistochemistry: Sections were stained 

with Polyclonal Anti-MuRF1/TRIM 63 antibody 

(MURF1) purchased from Biospes. Tibialis 

anterior was embedded in paraffin. They were cut 

into segments 8-10 mm in thickness. The samples 

were prepared following the manufacturer’s 

recommendations (28). Staining was seen and 

photographed with microscope. 

Computer Assisted digital image analysis 

(Digital morphometric study) Slides were 

photographed using Olympus® digital camera 

installed on Olympus® microscope with 1/2 X 

photo adaptor, using 20 X objective. The result 

images were analyzed on Intel® Core I5® based 

computer using VideoTest Morphology® software 

(Russia) with a specific built-in routine for area, % 

area measurement and object counting. 

Statistical analysis: Data were statistically 

analyzed using the Statistical Package for Social 

Sciences (SPSS) version 16. Quantitative data 

were described as means ± (SD) after testing for 

normality by Shapiro-Wilk test. One way ANOVA 

with LSD post-hoc multiple comparisons was used 

for comparison between groups. Independent 

samples t-test was used for comparison between 

sides of each group. "p value ≤0.05" was 

considered to be statistically significant. 
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Results 

The relative muscle weight ratio of the tibialis 

anterior muscle: Table (1) showed significant 

reduction in the relative muscle weight ratio of 

tibialis (T) in immobilized group (I gp). On the 

other hand, sodium hydrosulfide (NAHS) treated 

immobilized group (IH gp) showed significant 

increase in relative weight ratio of tibialis, but with 

addition of glibenclamide to NAHS treated group 

(IHG gp), there were no significant change. By 

comparing contralateral tibialis (TC) in different 

groups to the control ones, there were no 

significant difference except in (IHG) group, that 

showed significant decrease in the relative weight 

ratio of TC. 

Table (1): Comparison of the relative muscle weight ratio of tibialis anterior among the different 

experimental groups: 

               N=10 
Measure 

Group C 
 

Group I 
 

Group IH 
 

Group IHG 
 

Relative wt T 0.2±0.0355 0.09±0.009*a 0.2±0.013*ab 0.08±0.009*ac 
Relative wt TC 0.2±0.035 0.2±0.022 0.2±0.035 0.2±0.009ac 

(C): control group , (I) Immobilized group, (IH) Immobilized treated with H2S, (IHG) Immobilized treated  
with combined H2S and Glibenclamide . 
T (tibialis),TC (contralateral tibialis).  
One way ANOVA with LSD post-hoc multiple comparisons was used for comparison between groups. 
Independent samples t-test was used for comparison between each muscle and its contralateral. "p value 
≤0.05" was considered significant. 
a=any significance with C  group 
b=any significance with I group 
c=any significance with IH group 
*=any significance between Tibialis & its contralateral within the same group.  
 

Analysis of the contractile parameters of tibialis 

anterior muscle in the different experimental 

groups: 

By measuring the contractile parameters of the 

tibialis muscle and its contralateral in different 

experimental groups, figure (1) showed the Biopac 

recording of these parameters.  

By comparing the significance of the contractile 

parameters in different experimental groups, figure 

(1) showed significant changes in immobilized 

group (I gp) expressed in significant decrease in 

maximum isometric twitch force (Pt) and 

maximum tetanic force (Po). In addition, there was 

a significant decrease in maximum specific 

isometric tetanic force (sPo) and recovery index 

(RI). In the contrary, there was a significant  

 

increase in fatigue index (FI), a significant 

prolongation of time to peak (TP) and half 

relaxation time (1⁄2RT) of tibialis muscle. 

Noteworthy, treated group with NAHS (IH gp) 

showed significant increase in (Pt), (Po), (sPo), 

(RI), significant decrease in (FI) and significant 

shortening in (TP) and (1⁄2RT). But, adding 

glibencalimde to treated group (IHG gp) showed 

similar results to immobilized group (I gp) except 

for FI which was significantly increased in (IHG) 

group. 

In addition, by comparing TC in different groups 

to the control rats, there were no significant 

difference except in IHG group, show significant 

reduction in (Pt), (Po), (sPo), (RI) and significant 

increase in (FI) and (1⁄2RT).   
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Figure (1): Biopac record of tibialis anterior muscle in different experimental groups: (A) control group(C gp) (B) 
immobilized group (I gp) (C) contralateral tibialis in immobilized group (I gp) (D) H2S treated immobilized group (IH 
gp) (E) contralateral tibialis in H2S treated immobilized group (IH gp) (F) combined glibenclamide and H2S treated 
immobilized group (IHG gp) (G) contralateral tibialis in combined glibenclamide and H2S treated immobilized group 
(IHG gp). 

 
Figure (2): Comparison of contractile parameters recorded:  (A)maximum isometric twitch force (Pt) (B) 
maximum tetanic force (Po) (C)maximum specific isometric tetanic force (sPo) )in tibialis anterior muscle among 
different experimental groups. 
(C): control group, (I) Immobilized group, (IH) Immobilized treated with H2S, (IHG) Immobilized treated  with 
combined H2S and Glibenclamide . 
T (tibialis),TC (contralateral tibialis).  
One way ANOVA with LSD post-hoc multiple comparisons was used for comparison between groups. Independent 
samples t-test was used for comparison between each muscle and its contralateral. "p value ≤0.05" was considered 
significant. 
a=any significance with C  group 
b=any significance with I group 
c=any significance with IH group 
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*=any significance between T & its contralateral within the same group.  

 
Figure (3): Comparison of contractile parameters recorded: (D) fatigue index (FI%)   (E) recovery index (RI%)  
(F) time to peak (TP)  (G) half relaxation time (1/2 RT)  in tibialis anterior muscle among different experimental 
groups. 
 (C): control group, (I) Immobilized group, (IH) Immobilized treated with H2S, (IHG) Immobilized treated with 
combined H2S and Glibenclamide 
T (tibialis),TC (contralateral tibialis).  
One way ANOVA with LSD post-hoc multiple comparisons was used for comparison between groups. Independent 
samples t-test was used for comparison between each muscle and its contralateral. "p value ≤0.05" was considered 
significant. 
a=any significance with C  group 
b=any significance with I group 
c=any significance with IH group 
*=any significance between T &its contralateral within the same group.  
 
Assessment of total antioxidant capacity and 
malondialdehyde levels in tibialis anterior 
muscles 
Figure (4) showed significant increase in 
malondialdehyde (MDA) together with significant 
reduction in total antioxidant capacity (TAC) in 
tibialis muscle in (I group). Noteworthy, NAHS 
treatment in (IH) group showed significant 
decrease in MDA and significant enhancement in 
TAC. By adding glibenclamide to treated group, 
there were no significant changes. In addition, by 
comparing the contralateral muscle TC in different 
groups to the controls, there were no significant 

differences, except in IHG group, that showed 
significant increase in MDA with significant 
reduction in TAC. 
Results of histopathological and 
immunohistochemistry examination (MURF-1)  
A-Analysis of histopathological studies: 
Immobilized group (I gp) showed significant 
atrophic changes in tibialis anterior muscles in as 
shown in figure (5B,C). These atrophic changes 
were in form of marked separation of the muscle 
fibres, marked increased fibrous tissue and severe 
infiltration by inflammatory cells. Separation of 
the muscle fibers (pointed by blue arrows) and 
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infiltration by inflammatory cells (pointed by red 
arrows). Treatment of immobilized group with 
NAHS (IH gp) in tibialis anterior muscle showed 
significant alleviation of atrophic changes as 
shown in figure (5D). By adding of glibenclamide 
to treated group (IHG gp), there were no 

significant changes as compared to (I) group as 
shown in figure (5E,F). In addition, by comparing 
TC in different groups to control, there were no 
significant differences except in (IHG) group, 
show some atrophy as compared to the control rats 
as shown in figure (5G). 

 
Figure (4): Assessment of of total antioxidant capacity (TAC) and malondialdehyde (MDA) levels in tibialis anterior muscle in 
different experimental groups 
(C): control group , (I) Immobilized group, (IH) Immobilized treated with H2S, (IHG) Immobilized treated  with combined H2S and 
Glibenclamide ,   S (soleus) &SC (contralateral soleus) ,T (tibialis),TC (contralateral tibialis).  
One way ANOVA with LSD post-hoc multiple comparisons was used for comparison between groups. Independent samples t-test was 
used for comparison between each muscle and its contralateral. "p value ≤0.05" was considered significant. 
a=any significance with C  group , b=any significance with I group ,  c=any significance with IH group 
*=any significance between T & its contralateral within the same group.  

 
Figure (5): show the histopathological in the tibialis anterior muscle stained with Hx & E in magnification x 200  (A) control 
group   (B,C) the immobilized group (I gp)  (D) NAHS treated immobilized group (IH gp)    (E,F) combined glinenclamide and NAHS 
treated immobilized  group (IHG gp)   (G) contralateral tibialis muscle of the combined glinenclamide and NAHS treated immobilized 
group (IHG gp).  Separation of the muscle fibers (pointed by blue arrows) and infiltration by inflammatory cells (pointed by red 
arrows). 

*ab 

*a 

*a 

*ab 

*ac 

*ac 

abc 
abc 
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Analysis of immunohistochemistry studies: 

Table (2) and figure (6B) showed intense staining 

and significant increase in percentage area stained 

with anti-Murf-1 in tibialis anterior muscle in the 

immobilized group. Surprisingly, NAHS treatment 

in (IH) group showed significant decrease in 

percentage area stained with anti-Murf-1 in tibialis 

as compared to (I) group as shown in figure (6C). 

Moreover, adding glinenclamide to NAHS 

treatment in (IHG) group caused no significant 

changes as compared to (I) group as shown in 

figure (6D). 

In addition, by comparing the contralateral 

muscles in different groups to the control group, 

there was a significant increase in percentage area 

stained with anti-Murf-1 of tibialis anterior muscle 

of (IHG) group as compared to the control group 

as shown in figure (6E). 

 

 

Table (2): Comparing of percentage area stained with anti-Murf-1 in tibialis anterior muscles among 

different experimental groups 

                 N=10 
Measure 

Control group 
 

Group I 
 

Group IH 
 

Group IHG 
 

T area% 0.197±0.02 30.2±0.76*a 10.9±0.454*ab 31.3±0.474*abc 
TC area% 0.197±0.02 0.221±0.043 0.202±0.026 9.5±0.662abc 

(C): control group , (I) Immobilized group, (IH) Immobilized treated with H2S, (IHG) Immobilized treated  
with combined H2S and glinenclamide 
T (tibialis),TC (contralateral tibialis).  
One way ANOVA with LSD post-hoc multiple comparisons was used for comparison between groups. 
Independent samples t-test was used for comparison between each muscle and its contralateral. "p value 
≤0.05" was considered significant. 
a=any significance with C  group ,  b=any significance with I group,  c=any significance with IH group 
*=any significance between between T & its contralateral within the same group.  
 

 
Figure (6): show the immunological findings in the tibialis muscle stained with anti-Murf-1 antibody in 
magnification x 200  A) control group   B) the immobilized group (I gp)  C) NAHS treated immobilized group (IH gp)       
D) combined glinenclamide and NAHS treated immobilized  group (IHG gp)   E) contralateral tibialis muscle of the 
combined glinenclamide and NAHS treated immobilized group (IHG gp)   (black arrows refers to atrophy in the muscle 
fibers). 
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Discussion 

     In the present work, we aimed to study the 

possible effect of H2S on cast immobilization rat 

model of myopathy and investigate the role of 

ATP sensitive K+ channels and its possible 

mechanisms. Previous studies demonstrated that 

H2S has a protective effect in many health 

problems, but the possible protective role of H2S in 

skeletal muscle diseases still is not sufficient (29). 

   Potassium channels have been the first to be 

discovered to be the most important cellular targets 

of H2S.  It has been stated that H2S can activate 

ATP-sensitive potassium (KATP) channels (30) 

through S-sulfhydration the sulfonylurea receptor 

1 (SUR1) and SUR2B subunits of KATP channels 

leading to an increased KATP channel current (31).  

   Cast immobilization leads to many atrophic 

changes and attenuation in the muscle power that 

was confirmed by many findings in the present 

study. For instance, the present study showed 

significant reduction in the relative muscle weight 

ratio of tibialis anterior muscles in immobilized 

group (I gp). It can be explained by the decline in 

protein synthesis rate in the early state of 

unloading with dominant increase in protein 

degradation (32). 

     Also, the present results showed similar 

significant changes in the contractile parameters of 

tibialis anterior muscles in immobilized group (I 

gp) when compared to either the contralateral 

loose hindlimb muscles in the same group or 

control group (C gp). This confirms that the 

contralateral loose hindlimb was an adequate 

control reference as it had the same results as the 

negative control rats. The contralateral loose 

hindlimb served as a reliable control as it exposed 

to the same stress exerted on the immobilized 

limb. These results are in agreement with 

Marmonti et al. (33), who reported that there was 

significant decrease of muscle force after 7 and 14 

days of physical inactivity. Giordano et al.,(34) 

claimed that the attenuation of  muscle force may 

be due to reduced cross sectional area (CSA) of the 

muscle, increase the connective tissue between 

myofibrils, sarcomere dissolution, the skeletal 

muscle blood vessel endothelial degradation, 

reduction in capillary density and reduction in the 

number of mitochondria . The possible 

mechanisms of muscle atrophy are mediated via 

the activation of several proteolytic systems as 

calpain system, lysosomal protease system, 

caspase endoprotease system and ubiquitin–

proteasome system (35). 

    Furthermore, the present experiment showed 

significant increase in malondialdehyde together 

with significant reduction in the total antioxidant 

capacity in the tibialis anterior muscles of 

immobilized group (I gp). This is in agreement 

with Mostafa and Samir, (36) who reported that 

hindlimb immobilization resulted in significant 

elevation of MDA levels with significant reduction 

in total antioxidant capacity in the soleus muscle 

as compared with controls. It may be explained by 

the exposure to stress is associated with the 

production of oxidative species, which overcome 

the oxidant capacity of the muscle, eventually 

leading to muscle atrophy. 

All of these findings were confirmed by the 

histopathological examinations. The present work 

showed significant atrophic changes in tibialis 

anterior muscles in immobilized group (I gp). 

These atrophic changes were in form of marked 

separation of the muscle fibres, marked increased 

fibrous tissue and severe infiltration by 
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inflammatory cells. These results are consistent 

with Santos-Junior et al.,(37) who reported that 

hind limb immobilization in rats for two weeks 

leads to reduction in fiber size in the 

histopathological examination. Likewise, the 

current study showed diffuse marked positive 

staining and significant increase in percentage area 

stained with anti-Murf-1 in tibialis anterior 

muscles in the immobilized group.  

        Noteworthy, the present research illustrated 

that sodium hydrosulfide (NAHS) treated 

immobilized group (IH gp) showed significant 

increase in relative weight ratio of and tibialis 

anterior in relation to (I) gp (immobilized group). 

Likewise, we reported that NAHS treated group 

(IH gp) showed significant improvement in the 

contractile parameters of tibialis anterior muscles 

with reduction in fatigue index and better 

recovery. These results are consistent with Wetzel 

and Wenke, (38) who demonstrated that 

administration of H2S once a day for 4 weeks 

following femoral artery ligation in rat model led 

to significantly increased capillary density, 

collateral vessel growth and regional tissue blood 

flow in ischemic hind limb muscles. 

Remarkably, NAHS treatment in IH group showed 

significant decrease in MDA with significant 

enhancement in TAC level as compared to (I) 

group in the present study. This is in agreement 

with Shefa et al.,(39)   who stated that H2S protects 

the CNS by acting as an antioxidant thus 

protecting against central neurodegenerative 

diseases such as Alzheimer's disease. 

     The protective effect of hydrogen sulfide was 

confirmed by the results of the histopathological 

examinations. Interestingly, the present work 

showed significant alleviation of atrophic changes 

in tibialis anterior muscles in the treated group 

with NAHS (IH gp). As well, NAHS treatment 

showed less diffuse moderate staining and 

significant decrease in percentage area stained 

with anti-Murf-1 tibialis as compared to (I) group 

in the present study. 

     The possible protective effect of H2S  can be 

explained by activation of  AKT pathway by H2S 

resulting in enhancing the protein synthesis via 

upregulation of mammalian target of rapamycin 

(mTOR complex) (40). It was stated that mTORC1 

is the main regulator of cellular growth as it 

promotes anabolic processes such as protein, lipid 

and nucleotide synthesis, whereas it inhibits 

catabolic pathways, such as autophagy (41) . 

Though, it is reported that the mTOR pathway 

controls important cellular processes including cell 

survival, mitochondrial biogenesis and function 

(42). Moreover, it was reported that hydrogen 

sulphide has an anti- inflammatory effect as it 

decreases the pro-inflammatory cytokines: tumor 

necrosis factor (TNF-a), IL-6, and IL-8 (43). As 

well, it inhibits the leukocyte adherence, leukocyte 

infiltration and edema formation mainly through 

activation of KATP channels (44). 

          Glibenclamide is the most widely used 

sulfonylurea drug for the treatment of type 2 

diabetes mellitus. The main mechanism of 

glibenclamide is inhibition of ATP-sensitive 

potassium channel (KATP). Glibenclamide was 

used in this study to prove the significant role of 

KATP   in the protective role of  H2S.  Noteworthy, 

the present work stated that addition of 

glibenclamide to NAHS treatment to immobilized 

rats (IHG gp) led to similar changes in the relative 

muscle weight ratio of  the tibialis anterior muscles 

as immobilized group (I gp). Also, we found that 
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contralateral tibialis (TC) in IHG group showed 

significant decrease in the relative weight ratio in 

the present study. 

         Furthermore, adding glibenclamide to the 

treated group (IHG gp) resulted in similar 

contractile properties as immobilized group (I gp). 

Moreover, addition of glibenclamide to treated 

group (IHG gp) showed significant increase in 

malondialdehyde together with significant 

reduction in the total antioxidant capacity in the 

tibialis anterior muscles  same as the immobilized 

group (I gp). These stated results were confirmed 

by the histopathological examinations that 

demonstrated that adding glibenclamide to NAHS 

treatment in (IHG) group in the present thesis 

caused similar atrophic changes as (I) group. Also, 

(IHG) group showed diffuse marked positive 

staining and significant increase in percentage area 

stained with anti-Murf-1 in tibialis anterior 

muscles in the present work. So that, 

glibenclamide can be assumed to abolish the 

cytoprotective effect of hydrogen sulfide most 

probably through blocking KATP channels. 

         So, glibenclamide which is KATP channels 

blocker can reverse the protective effect of H2S on 

the contractile properties of the skeletal muscle in 

the cast immobilization. Thus, we can suggest that 

H2S mainly exerts its protective role in the skeletal 

muscle through activation of KATP channels. 

Recommendations  

Hydrogen sulfide donors can be used as additional 

dietary supplementations for the prevention of 

myopathy in prolonged cast immobilization.  
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