Analysis of BRCA1 and BRCA2 Mutations in Eastern Egyptian Breast Cancer Patients

Yousry Mostafa Hussien¹, Amal F. Gharib¹, Hend Mohamed Ibrahim¹, Mohamed Esmat Abdel-Ghany¹ and Wael H. Elsawy²

¹Department of Medical Biochemistry, ²Department of Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt. ³ Department of General Surgery, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

ABSTRACT

Mutations in breast cancer susceptibility genes 1 and 2 (BRCA1 and BRCA2) have higher frequency in breast cancer cases. Three founder mutations 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 are frequently reported in breast cancer patients from various ethnic backgrounds. The aim of the current study was to evaluate the frequency of the BRCA1 and BRCA2 mutations in Eastern Egyptian sporadic breast cancer patients and their relatives as possible diagnostic markers. One hundred women with sporadic breast cancer and one hundred healthy first-degree relatives were included in the study. Multiplex polymerase chain reaction method was used to analyze the DNA prepared from peripheral blood. Data analysis showed that 185delAG mutation in BRCA1 was expressed at low frequency (3%), whereas the 5382insC in BRCA1 and 6174delT in BRCA2 were not detected within the Eastern Egyptian population.

Conclusion: The low percentage of BRCA1 and BRCA2 mutations in apparently sporadic early-onset cancer and relatives suggested that mutation detection is insufficient to screen Egyptian population.

INTRODUCTION

Breast cancer is the most common malignancy in women and the major cause of cancer related-deaths among women worldwide¹,². Development of breast cancer involves multiple factors such as environmental, genetic or interaction between both genetic and environmental factors³. Cancer can develop through accumulation of mutations in proto-oncogenes and tumor suppressor genes, as a result of genetic predisposition or exposure to physical, chemical, biological and environmental factors⁴. These mutations are either inherited (germline) or acquired (somatic) during daily activities. Early detection of breast cancer has the priority in medical management of the disease because the treatment of the advanced breast cancer is futile and disfiguring.

Breast cancer susceptibility gene 1 (BRCA1) and gene 2 (BRCA2) are tumor suppressor genes that are inactivated during neoplastic development⁵,⁶. They code for tumor suppressor proteins that interact with regulatory elements for DNA repair, transcription and cell cycle control to stop the uncontrolled cell proliferation. Several studies show that different polymorphisms in
BRCA1 and BRCA2 genes could be associated with higher risk of breast cancer. Germline mutations of these genes can either produce truncated proteins or reduce their expressions which lead to cancer(7,8). These mutations are transmitted in autosomal dominant fashion and may predispose to breast or ovarian cancers(9,10). The anomaly of these proteins may contribute to 90\% of the risk of development of familial cancer breast cases(5,9). Mutation such as 185delAG and 5382insC in BRCA1 and 6174delT in BRCA2 are associated with higher risk of breast cancer in individuals of Ashkenazi Jewish background(8,11). The three mutations accounted for 62\% of Ashkenazi patients with ovarian and/or breast cancer(12). A potential role in identifying individuals at risk was attributed to the high frequency of these mutations in BRCA genes.

The aim of our study was to analyze the frequency and evaluate the BRCA 1 and BRCA 2 gene polymorphisms as a possible early diagnostic markers in sporadic breast cancer cases and their relatives using a simple and rapid multiplex PCR method that allows the simultaneous detection of the three common mutations, 185delAG and 5382insC in BRCA1, and 6174delT in BRCA2.

MATERIAL & METHODS

Subjects:

One hundred sporadic breast cancer patients (mean age: 42 ± 9 years) and one hundred relatives with no signs or symptoms of malignancy (mean age: 43 ± 8 years) were selected. They either have no family history for breast cancer or have an early onset or bilateral breast cancer. The subjects were recruited from various surgery and Oncology Clinics at Sharkia Governorate, Egypt. The study was approved by the ethical committee of Faculty of Medicine, Zagazig University, Egypt and a written informed consent for the experimental use of specimens was obtained from all subjects. All participants were informed about benefits and importance of the genetic testing. The aim of the study was clarified and explained to all subjects as a trial for early prediction of cancer breast especially in families that did not have previous family history taking. Patients and relatives were subjected to full clinical examination and detailed family history. History of age of menarche, menopause, marital status, parity, age at 1st delivery and breast feeding were collected for statistical analysis after genotyping analysis. Cases with cancer were subjected to modified radical mastectomy procedure after keeping their records for further correlation between the incidence of mutations and the response to surgical treatment, chemotherapy and radiotherapy.

DNA Preparation:

EDTA peripheral blood samples (3 ml) were obtained from patients and relatives, coded and analyzed in a blind manner for genomic DNA extraction using Promega genomic DNA extraction kit (Promega, Madison, USA) as described in the user manual. The quality of the genomic DNA was tested using agarose gel electrophoresis.
Multiplex PCR:

To study the genotypes of 5382insC and 185delAG mutations in BRCA1 and 6174delT mutation in BRCA2, a Multiplex polymerase chain reaction was performed with allele-specific primers as described by (13). For each allelic mutation three primers (one common, one specific for the wild type allele, and one specific for the mutant allele) were used (Table 1). The PCR reactions were performed in 25 μl reaction containing 100 ng of genomic DNA, 1X PCR mix (20 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM MgCl₂, 0.3 mM dNTPs and 2U Taq DNA polymerase) and 2 μM for P1 and P3, 0.4 μM for P2, 0.12 μM for P4, P5 and P6, 0.3 μM for P7 and P9, and 0.24 μM for P8 primers. The reaction mixtures were heated at 94 °C for 5 min followed by 35 cycles of amplification, each consisting of 40 sec of denaturation at 94 °C, 40 sec, of annealing at 55 °C, and 60 sec of extension at 72 °C, followed by final extension for 5 min at 72 °C. The amplified products were resolved by electrophoresis in a 3% agarose gel, visualized using gel documentation system and analyzed visually for the presence or absence of the specific bands.

Table 1: Primers sequence and amplicon size for BRCA1 and BRCA2 sites

<table>
<thead>
<tr>
<th>Primer name</th>
<th>BRCA1 185delAG</th>
<th>BRCA1 5382insC</th>
<th>BRCA2 6174delT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence of the Primers</td>
<td>5'GGTTGGCAGCAATATGTGAA3'</td>
<td>5'GCTGACTTACCAGATGGGACTCTC3'</td>
<td>5'AGCTGGTCTGAATGTTCGTTACT3'</td>
</tr>
<tr>
<td>Size (bp)</td>
<td>335</td>
<td>354</td>
<td>151</td>
</tr>
</tbody>
</table>

Serum levels of CEA and CA15.3 were measured by an enzyme-linked immunosorbent assay (ELISA) using ELISA commercial kit according to the manufacturer’s instructions (DRG Diagnostics, GmbH, Germany). The assay employs the quantitative sandwich enzyme immunoassay technique.

Statistical analysis:

Statistical Analysis was performed using SPSS-11 Software.
package to determine the Chi square, student unpaired (t) test and other statistical parameters.

RESULTS

Multiplex allele-specific PCR was used for simultaneous detection of 5382insC and 185delG in BRCA1 gene and 6174 in BRCA2 gene, to investigate the frequency of these mutations among Eastern Egyptian women in Sharkia Governorate, Egypt. The study involved sporadic breast cancer patients and their relatives (Table 2) and subjected for multiplex PCR analysis.

<table>
<thead>
<tr>
<th>Character</th>
<th>Patients (N=100)</th>
<th>Controls (N=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset</td>
<td>42 ± 9</td>
<td>43 ± 8</td>
</tr>
<tr>
<td>Age of menarche</td>
<td>14 ± 2</td>
<td>13 ± 2</td>
</tr>
<tr>
<td>Family history of breast cancer</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Family history for different cancer</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Parity %</td>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>Age at 1st delivery</td>
<td>25 ± 5</td>
<td>26 ± 4</td>
</tr>
<tr>
<td>Breast feeding %</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>Menopause %</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Menopause age</td>
<td>45 ± 5</td>
<td>44 ± 5</td>
</tr>
</tbody>
</table>

The mutant amplicons were different from that of the wild type by 20 bp that were included in the primer. For the 185delAG mutation, 5382insC and 6174delT, the mutant and wild type amplicons are 354 and 335, 295 and 271, 171 and 151, respectively. A minimum of three bands were detected in absence of any mutant alleles whereas, a maximum of six bands were observed in presence of all three mutations. Analysis of PCR products showed a low incidence for 185delAG mutation as 3% of that mutant was detected in both patients and relatives whereas mutations 6174delT and 15382insC were not detectable in the present study (figure 1).

The level of carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3) tumor markers were assayed and used to correlate the mutation expression associated with their serum levels (Table 3).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Patients</th>
<th>Control</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEA(ng/ml)</td>
<td>6.7 ± 2.2</td>
<td>2.8 ± 0.3</td>
<td><0.001</td>
</tr>
<tr>
<td>CA15.3(IU/L)</td>
<td>66.24 ± 23</td>
<td>2.8 ± 0.4</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*=P<0.001 by student t test; CEA= carcinembryonic antigen; CA15.3= Cancer antigen 15.3.
In the breast cancer patients the CEA ranged 4.5 to 8.9 ng/ml, with a mean value ± SD (6.7± 2.2 ng/ml), while in the control group, the CEA ranged 2.5-3.1 ng/ml, with a mean value of 2.8± 0.3 ng/ml (Table 3). There was significant difference in CEA levels (P<0.001) comparing patients to relatives control, whereas, no correlation between the level of CEA and the frequency of any of the three studied mutations was found. Regarding to CA15.3, there was significant difference between breast cancer cases and the control group (P<0.001), as the mean level of CA15.3 ± SD in the patients were 66.24± 23 IU/l, with a range of 43-89 IU/l, while in the control group CA15.3 ranged 2.5 to 3.2 IU/l, with a mean value ± SD of 2.8± 0.4 IU/l (Table 3). There was also no correlation between the level of CEA and the frequency of any of the three studied mutations.

Fig. 1: Gel electrophoresis for the 185delAG mutation, 5382insC and 6174delT, the mutant and wild type amplicons are 354 and 335, 295 and 271, 171 and 151, respectively. Lane M: marker A, Lane 1,2,4,5,6,7, three bands were detected in absence of any mutant alleles .lane 4.additional mutant A allele (354bp) of 185delAG.

DISCUSSION

BRCA1 and BRCA2 genes are needed for the homologues recombination repair pathway which identifies and repairs DNA – strand breaks caused by chemical or physical agents, so mutations of these genes are often found in cases of familial breast cancer. Nearly 5-10 % of all breast cancer patients are familial, with earlier onset while others are sporadic. The variation of germline mutation in BRCA1 or BRCA2 gene in breast cancer depends on the ethnicity of studied population and familial versus sporadic definition.

A large number of different mutations in the BRCA1 and BRCA2 genes have been reported worldwide, but little is known about their frequency in Eastern Egypt. The current study was to detect the role of
these two susceptibility genes in breast cancer in Eastern Egyptians.

In the present study, we found that the 185delAG mutation in BRCA1 was present in 3% of the Eastern Egyptian population, whereas, the 5382insC of BRCA1 and the 6174delT of BRCA2 were not detected in our study groups.

A similar study was performed in Alexandria, Egypt for breast cancer patients under 40 years old with bilateral breast cancer and positive family history to find the frequency of the BRCA1, 185delAG mutation in Alexandria population(14).

They found a higher frequency of the 185delAG mutation (10% compared to 3% in our study). A second study was done in Alexandria and also show a higher expression of the 185delAG founder mutation(15).

This difference may be explained on the basis that their selection of patients with higher probability for familial breast cancer which was different from our selection criteria for patients of sporadic breast cancer and their relatives (Table 2). A similar study that show a low frequency of the 185delAG founder mutation was carried out on Iranian patients, where they found that a percent of 1.2 of 185delAG mutation in BRCA1 gene(16). Other studies on Iranian also could not detect any of the three mutations in their population(17).

In that study, they did not identify the ethnicity of the two sisters that carry the 185delAG mutation(16).

In addition, there are several studies reporting these founder mutations in other populations(7,18,19).

The Ashkenazi Jewish breast cancer patients showed the heights prevalence of the 185delAG mutation in BRCA1 gene(12).

There was significant difference in CEA and CA15.3 levels when patients were compared to healthy relative controls. On the other hand, there was no correlation between the level of CEA or CA15.3 and the frequency of any of the three studied mutations in our study groups.

To our knowledge no other studies were performed to determine the 5382insC in BRCA1 or the 6174delT in BRCA2 genes in Egyptian population.

Our data and the data from Alexandria collectively indicate a significant frequency of the 185delAG mutation and no detection of the 5382insC in BRCA1 or the 6174delT in BRCA2 genes in Egyptian population. Thus, there may be other sites in the BRCA genes or other genes that may be significant to development of breast cancer in Egyptian population. Special attention and further studies for the 185delAG mutation should be considered.

Hence our study involved only random sample of Eastern Egyptian Population from Sharkia, we recommend more studies in other parts of Egypt that involve sporadic cases and their relatives. We also recommend performing the study in familial breast cancer after diagnosis of such case and scanning of BRCA1 and BRCA2 genes for diagnostic mutations.

CONCLUSION

The low percentage of the 185delAG mutation in BRCA1 and the non-detection of other mutations
in apparently sporadic early-onset cancer suggested that early onset cancer alone is insufficient to justify screening in the Egyptian population.

Our study suggested that the prevalence of BRCA 1 and BRCA 2 mutations are lower in Eastern Egyptian. So, complete BRCA 1 and BRCA 2 genes sequence analysis might be required for identification of specific mutation in Egyptian. Furthermore, there might be other genes that contribute more significantly to familial breast cancer in this population than BRCA genes.

Acknowledgment

This Study was supported by a grant from Zagazig University Graduate Research Fund. The work is a collaborative work between Biochemistry, Oncology Departments, Faculty of Medicine at Zagazig University and the Surgical Department, Faculty of Medicine at Al-Azhar University. With specific thanks to volunteer patients and their relatives.

REFERENCES

تحليل طفرات BRCA1 و BRCA2 في مرضى سرطان الثدى في المصريين

يسري مصطفى حسين، أمل فتحي غريب، هند محمد إبراهيم، محمد عصمت عبد الغنى، وائل حسن الصاوي

قسام الكيمياء الحيوية الطبية، قسم علاج الأورام، كلية الطب جامعة القاهرة
قسم الجراحه العامة، كلية طب الأزهر جامعة القاهرة

إن مولد الطفرات الجينية لقابلية حدوث سرطان الثدى (1BRCA و2BRCA) موجود بنسبة عالية في مرضى سرطان الثدى. وقد وُجدت ثلاث طفرات في جين BRCA1، والتي كانت 185delAG في BRCA1 و5382insC في BRCA1 و6174delIT في BRCA2. هذه الطفرات توجد بنسبة متكررة في مرضى سرطان الثدى من عرقيات مختلفة.

يشمل هذا البحث تقييم نسبة حدوث طفرات في جين BRCA1 و2BRCA و185delAG في BRCA1 في مرضى سرطان الثدى المصريين. وفي أقرانهم، وقد استخدمت المحاولة السلسلة المتداخلة للتحليل الدي إن أي الدي إل لدى المرضى الذين تم استخراجهم. وجدت النتائج وجود طفرة 185delAG في جين BRCA1 في بعض المرضى. تشير النتائج إلى أن هذا الجين له دور في مسح وتشخيص المرض في المرضى المصريين.

من هذه الدراسة وجد أن نسبة الطفرات في جين BRCA1 و2BRCA في مرضى سرطان الثدى، بما أن له دور في تشخيص المرض في المصريين.