Serum Levels of Tumor Necrosis Factor-alpha, Nitric oxide and Malondialdehyde in Patients with Behcet’s Disease

Mona A. Abdel Hamid*, Nadia K. Kashmiry** and Mohamed Marzouk
Medical Biochemistry *, Clinical and Chemical Pathology ** and Ophthalmology Departments, Research Institute of Ophthalmology

ABSTRACT

Objective: To determine the serum levels of tumour necrosis factor-alpha (TNF-α), nitric oxide (NO) and Malondialdehyde (MDA) in patients with Behcet’s disease (BD). This study included 27 patients with Behcet’s disease and 16 healthy control subjects. Serum (TNF-α) was measured by an enzyme linked immunosorbent assay (ELISA) while serum NO oxide levels were determined by Griess reaction. The MDA levels were detected by thiobarbituric acid reaction. There was a significant increase in the levels of TNF-α, NO and MDA in Behcet’s disease patients compared to controls. No significant correlation was detected between TNF-α and NO or MDA levels in patients or controls. A significant positive correlation was detected between serum levels of NO and MDA in BD patients. This suggests that elevated levels of TNF-α, NO and MDA may be related to the pathogenesis of Behcet’s disease.

INTRODUCTION

Behcet’s disease (BD) is characterized by oral aphthous lesions, genital ulceration and eye inflammation. Ocular manifestation is associated with a severe prognosis in BD and it leads to blindness in 15-25% of patients with ocular disease. The principal cause of visual loss being consecutive inflammatory ischaemic retinal vein occlusions and macular edema. Behcet's disease is a systemic inflammatory vasculitis of young adults with unknown etiology, characterized by endothelial dysfunction and occlusion in both deep venous and retinal circulation. Ocular involvement occurs in 70% of cases and is characterized by periphlebitis, periarteritis, vascular occlusion, and thrombosis leading to blindness despite vigorous treatment.

Despite the diverse inflections in different organ systems, vasculitis is perceived as the common basic pathological process in BD. The exact cause is unclear but viral, genetic, immunological and environmental factors have been implicated in the pathogenesis of BD.

Behcet’s disease is considered as an autoimmune disease, since the activation of immune system, pro-inflammatory cytokines and mediators may affect the course of the disease. Cytokines are proteins which are produced by various cell types, are important mediators of immunoinflammatory reactions. One such regulating cytokine is tumor necrosis factor (TNF)-alpha, which exerts...
multiple stimulatory effects on T cells by binding to specific receptors and
increase the expression of human leukocyte antigens\(^7\).

Nitric oxide (NO) is an organic-

free radical gas produced in the
vascular endothelium by nitric oxide
synthase (NOS) isoenzyme using L
arginine as substrate\(^8\). Two isoforms
of NOS have been clearly described.
The first one is inducible NOS
(iNOS); it is induced in macrophages
and liver cells by endotoxin and
cytokines\(^9\). The second form is
constitutive NOS (cNOS), which is
dependant on calcium and calmodulin.
cNOS releases NO physiologically in
the regulation of many cell functions
and communication\(^10\). The (i NOS)
synthesizes NO in greater amounts
and it is implicated in the
pathogenesis of numerous
inflammatory and autoimmune
diseases\(^11\). The origin of Behcet's
disease (BD) is unclear. One of the
prominent features of BD is vasculitis
and thrombosis as a result of
endothelial dysfunction\(^12\). Thrombosis
is frequently seen in BD. The
Major factor responsible for increased
frequency of thrombosis is thought to
be endothelial dysfunction\(^13\).
Releasing NO by the endothelium
promotes vasodilatation and inhibits
inflammation, thrombosis, and
vascular smooth muscle
proliferation\(^14\).

Malondialdehyde (MDA), one of
end products of lipid peroxidation, is
induced by reactive oxygen species,
and is a marker of oxidative stress and
T cell activation\(^15\).

The aim of this study was to
determine the serum TNF-alpha, NO
and MDA levels, as well as their
correlations with each other in
patients with BD.

MATERIALS & METHODS

A total of 27 patients with ocular
BD attended Behcet's disease clinic
and 16 age and sex matched healthy
control subjects were included in the
present study. All BD patients
fulfilled the criteria of the
International Study Group for
Behcet's Disease. Patients' history was
obtained from case notes and ocular
examinations were performed. In
particular, a history of systemic
thrombosis and evidence for retinal
vascular occlusion was examined.
Where the posterior segment could
not be visualized, patients with an end
stage ocular disease were assumed to
have suffered vaso-occlusive disease
of the retina.

Blood samples: Fasting blood
samples (totally 10 ml) were drawn
using a 25 gauge needle from a
peripheral vein, avoiding haemolysis,
into plain tubes. None of the patients
and controls had received any topical
or systemic medication at least two
weeks before blood collection.
Following an immediate
centrifugation of the blood samples
for 10 minutes at 4°C, serum was
collected and kept at \(-70°C\) until use.

Determination of TNF-α by an
enzyme linked immunosorbent assay
(ELISA)\(^16\).

Determination of nitric oxide levels by spectrophotometric method. Total
nitrite (nitrite NO\(_2\) + reduced nitrate
NO\(_3\)) analysis by Griess reagents for
use in the determination of nitrite
(NO\(_2\)) as an indicator of NO
production in plasma. NO has brief
half life and is rapidly converted to the stable end products NO₂ and NO₃.
Nitrate was measured as nitrite after enzymatic conversion by nitrate reductase. Briefly samples were mixed with 1 gm/100 ml sulfanilamide in 2.5% phosphoric acid and 0.5 gm/100 ml naphthyl–ethylenediamine in 2.5% phosphoric acid which was allowed to react at room temperature for 10 minutes. The concentration was determined by measuring absorbance at 530 nm in comparison with standard solutions of sodium nitrite at concentrations of 3.12, 6.25, 12.5, 25, 50 and 100 µmol/L with Griess reagent. Determination of MDA levels by a method based on the reaction with thiobarbituric acid (TBA) at 90-100°C. In TBA test reaction, MDA or MDA like substances and TBA will react together to produce a pink pigment having an absorption maximum at 532 nm.

Statistical analysis:
Data was expressed as mean ± SD. The two groups were compared using the Anova; single factor test. The degree of association between the variables was assessed using Pearson’s correlation coefficient (r), where values of p < 0.05 were considered significant.

RESULTS

Clinical data of the controls and BD subjects were summarized in table (I).

Table (II) shows mean ± SD of TNF-alpha, NO and MDA in controls and BD patients.

TNF levels in the serum of BD patients was (31.5±6.7 pg/ml) significantly higher than controls (12.9±2.9 pg/ml) (p < 0.001). Also, the mean serum concentration of NO was significantly elevated in patients with BD compared to the corresponding level in controls (23.3±2.5 µmol/L) and (30±3.1 µmol/L) respectively (p < 0.05).

The mean serum level of MDA in BD was 15.6±2.5 µmol/L which is significantly higher than controls 5.04±1.3 µmol/L (p < 0.001).

No significant positive correlation between TNF-alpha and NO levels and MDA levels r = 0.2 (p > 0.05). Meanwhile, there was a significant correlation between MDA and NO r = 0.47 (p < 0.05).

![Table (1): Clinical characteristics of the controls and BD group](image)

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Number</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>- Sex (M/F)</td>
<td>10/6</td>
<td>15/12</td>
</tr>
<tr>
<td>- Age (years)</td>
<td>37.6 ± 9</td>
<td>37.4 ± 10</td>
</tr>
<tr>
<td>- Duration of disease (years)</td>
<td>-</td>
<td>7.6 ± 6.4</td>
</tr>
</tbody>
</table>

3
Table (2): Mean ± SD of TNF-α, NO and MDA levels in serum of controls and BD patients

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>BD</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>- TNF-α (pg/ml)</td>
<td>12.9 ± 2.9</td>
<td>31.5 ± 6.7</td>
<td>p < 0.001</td>
</tr>
<tr>
<td>- NO (µmol/L)</td>
<td>23.3 ± 2.5</td>
<td>30 ± 3.1</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>- MDA (µmol/L)</td>
<td>5.04 ± 1.3</td>
<td>15.6 ± 2.5</td>
<td>p < 0.001</td>
</tr>
</tbody>
</table>

DISCUSSION

Behcet's disease is a chronic multisystemic disorder characterized by relapsing inflammatory activation. (19) Although the aetiopathogenesis of the disease has not yet been clarified, several mechanisms such as genetics, infection and autoimmunity have been suggested. The visual prognosis in patients with Behcet's disease is poor, the principal cause of visual loss being consecutive inflammatory ischaemic retinal vein occlusions and macular oedema. (20)

The present study showed that TNF-α levels in patients with BD were significantly higher compared to the controls. It is possible that the disease is associated with secretions of pro-inflammatory mediators by direct activation of circulating monocytes. (21) Previous studies have also reported increased serum TNF-α in BD patients. (22, 23) The results of the present study confirm these findings and suggest involvement of the immune system in BD. This activation could be related to the pathogenesis of the disease and takes part in tissue damage.

This study demonstrated increased serum NO levels in BD patients. In previous studies, NO was also found to increase in diseases such as ocular inflammation, (24) and systemic lupus erythematosus (25). Increased NO production is believed to be associated with inflammatory...
processes. Hence, increased NO production is expected in patients with BD during exacerbations as in inflammatory dermatosis. Previous studies have reported increased NO production in BD, similar to this study (21, 26). However, in another study, decreased NO levels in patients with BD were demonstrated (27). They postulated that decreased NO production might have critical biological activities relevant to pathological events during disease activity. On the other side, Aydin et al (28) could not demonstrate any change in NO levels between patients with BD and controls. They hypothesized that other types of nitric oxide synthases (NOs), the inducible or neuronal NOS may affect the plasma NO level rather than endothelial NO synthase.

MDA levels in patients with BD were significantly higher in comparison to the normal control group. These findings were consistent with other previous reports (3, 28). The imbalance between oxidant/antioxidants that are produced by the neutrophils and in the plasma gives rise to lipid peroxidation caused by oxygen free radicals (OFR) which in turn results in the elevation of MDA in BD. OFR interact with membrane lipids of the cells and generate MDA as a result of peroxidation (28).

In this study TNF-α, NO and MDA levels are found to be increased. However, the lack of correlation between TNF-α and NO suggests that activation of NOS and cytokine production could be by different mechanisms resulting in various clinical manifestations of the disease.

A positive correlation was detected between MDA and NO serum levels in BD patients. This agreed with the finding of Aydin et al (28); they postulated that the endothelium can be damaged by excessive NO production due to direct toxicity of the molecule or due to peroxynitrite formation. Oxidative damage of polyunsaturated fatty acids initiates lipid peroxidation, which in turn elevates MDA.

Recommendation:
Amelioration of clinical manifestations would be envisaged by targeting cytokines, chemokines and lipid peroxidation with pharmacological agents. Currently, there is considerable interest in the potential role of anti-tumour necrosis factor (TNF) antibody therapy, which are potent anti-TNF medications, effective in certain forms of the disease, particularly mucosal ulceration. Early results with the monoclonal antibody against TNF have shown benefit in ocular, orogenital, and gastrointestinal Behcet’s disease, but long term efficacy is unknown.

REFERENCES

3- Evereklioglu C, Er H, Türköz Y, and Cekmen M (2002): Serum levels of TNF-alpha, sIL-2R, IL-6, and IL-8 are increased and associated with elevated lipid peroxidation in patients with Behçet's disease. Mediators Inflamm. April; 11(2): 87–93.

17- Benjamin N and Vallence P (1994): Plasma nitrite as a marker

مستوى عامل نخر الورم والاكتسيد النيتريك والمالون الثنائي الاندهاد في مصل الدم لمرضى بهجت

د/ منى عبد الحميد، قسم الكيمياء الحيوية الطبية، معهد بحوث أمراض العيون
د/ نادية كشمري، قسم البيولوجيا الاكلينيكية، معهد بحوث أمراض العيون
د/ محمد مرزوق، قسم الرمد، معهد بحوث أمراض العيون

يهدف هذا البحث دراسة مستوى عامل نخر الورم والاكتسيد النيتريك والمالون الثنائي الاندهاد في مصل الدم لمرضى بهجت وكذلك تقييم العلاقة بين الدلالات المدروسة. وقد تم اختيار سبع وعشرين مريضاً بمرض بهجت ومقارنتهم بسبعية عشرة شخصاً من الأصحاء كمجموعة ضابطة. وتم عمل فحص رمدي شامل وسحب عينات الدم وفحصها وقياس كل مستوى عامل نخر الورم والاكسيد النيتريك والمالون الثنائي الاندهاد. وقد وجد ارتفاع دلاة إحصائية في مستوى كل من عامل نخر الورم والاكسيد النيتريك والمالون الثنائي الاندهاد في مصل الدم لمرضى بهجت مقارنة بالمجموعة الضابطة. وكذلك وجدت علاقة ارتباط ايجابية بين اكسيد النيتريك والمالون الثنائي الاندهاد لمرضى بهجت ومن هذه النتائج يمكن استنتاج أن ارتفاع هذه الدلالات من اهم الاسباب المؤدية لحدث اعراض مرض بهجت.